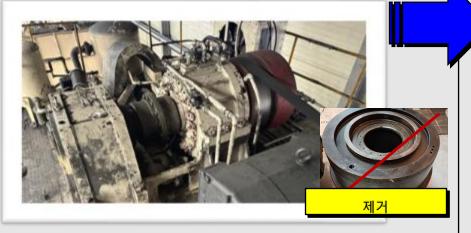
현대몰드 600TON 인버터 설치

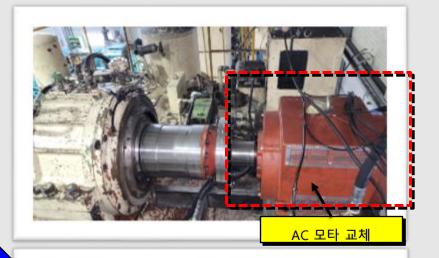
2025.03

목 차

- ✓ 커버페이지 1
- ✓ 목차페이지 2
- ✓ 현대 인버터 특징 -3
- ✓ 인버터적용적용 600톤 4,5,6
- √ 600TON 인버터 설치후 기대효과---7
- ✓ 인버터 설치 600TON Motion 가능 범위--8
- ✓ 인버터 Press 와 Servo Press 비교 ---9
- ✓ 600TON 인버터 설치 후 작동-- 10,11
- ✓ 인버터 설치후 운전방식 비교 12,13
- ✓ 인버터 적용시 전력절감 추산표 14,15

현대 인버터 특징

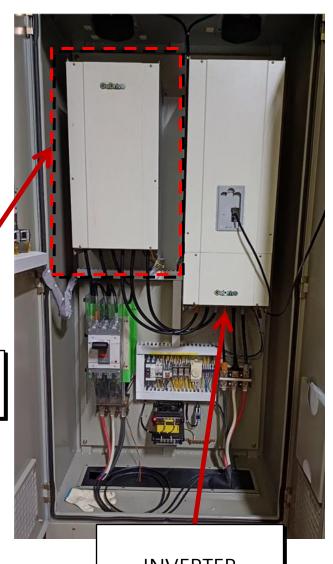

•••••


- 1. 모터 기동시간 단축
- 10분(기존) ▶ 10~20초 (인버터 적용후)
- 2. 프레스 정지시간 단축
- 20분(기존) ▶ 5~10초 (인버터 적용후)
- 3. 촌동 기능
- 촌동기능을 이용하여 금형 셋팅 용이
- 4. 저기동전류
- 600~800% (기존) ▶ 150%이내 (인버터 적용후)
- 5. 금형 보호
- 열간 프레스 작업시 work 끼임 상황 발생시 모터 정지시간 단축으로 금형을 보호함.
- 6. Flying start 기능으로 관성이 큰 부하에서 모터의 속도에 마추어 운전가능

현대몰드산업 600TON 개선작업

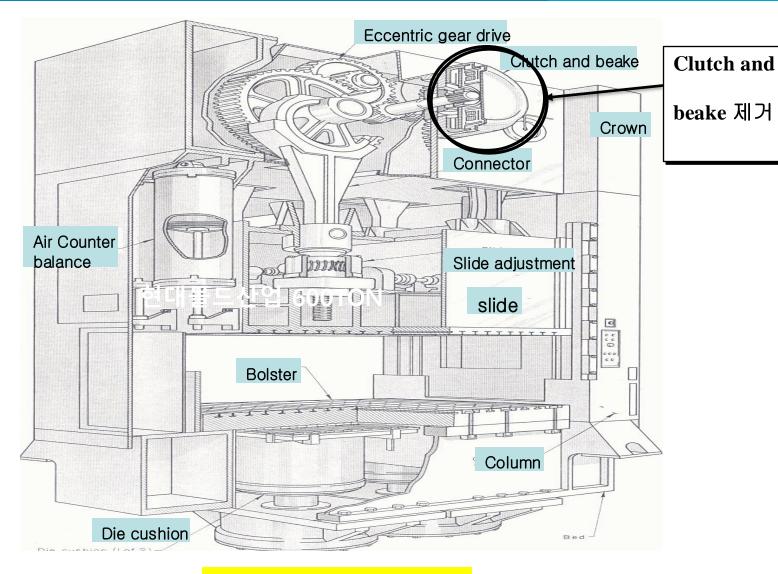
◆ AC 모타 교환

- ◆ AC 모타 교환
- ◆ 인버터 설치



INVERTER PANEL 설치 내용

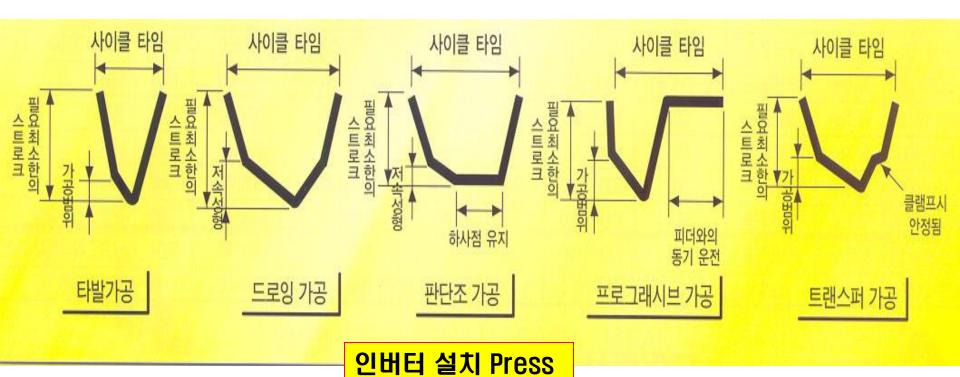
회생전력



INVERTER

현대몰드산업 600TON 제거 내용

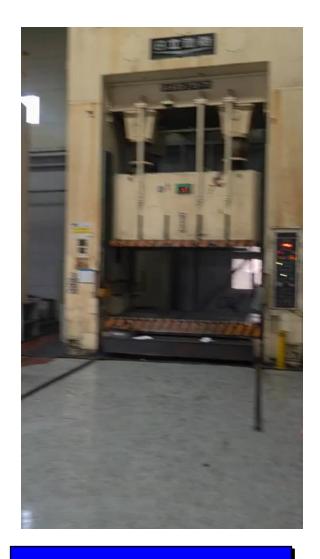
기계식 프레스 구조



현대몰드산업 600TON 인버터 설치후 기대효과

메카프레스	프레스 다이타입	기대효과 Motion	
SUPAC MANUFACTURE OF THE PARTY	THE PARTY OF THE P	1. 기계고장 최소화 2. 유압프레스 와 동일한 속도 조절가 능함 3. DEEP DRAW'G 생산 가능 4. 비가동시간 전기료절감 5. 모터가동후 10~20초 생산가능 6. 노후 프레스 개조 가능함	
	TANDEM LINE DIES	Pendulum Motion	
	Progressive dies	정회전/역회전 반복 가능	

인버터 Press 와 Servo Press 비교




구분	인버터 설치 Press (개조작업)	Servo Press (기존 메이커)	비고
장점	1) 클러치와 플라이휠이 없는 간단한 구조 2) Free Motion에 의한 최적의 가공모션 설정. 3) 리니어 센서에 의한 Die-Hight 보정 기능(20 미크론까지) 4) Spring-Back 발생시 다양한 Motion으로 개선 함. 5) Drawing 가공에서 SPM 을 올려도 성형성개 선 6) 금형수명이 길다. 7) 전기료(회생전력 발생함) 절감됨(30%) 8) 구 프레스 개조 가능함 9) 서브 모터 프레스와 동일한 Motion 가능함 10)유압 프레스 와 동일한 기능 역할 11) 기계식 프레스 서보 프레스 동일 기능 12)기게식 프레스 경정비용절감됨 (CLUTCH AND BEAKE 소모품 불필요함) 6) 소음, 진동 저감: 작업환경개선 7) 저속(5HZ)구간 성형톤 유지하며 작업가능 8) 금형제작업체 D/SPOT'G 불필요함 9) 금형제작업체 형합작업시 전력소모절감됨	1) 클러치와 플라이휠이 없는 간단한 구조 2) Free Motion에 의한 최적의 가공모션 설정. 3) 리니어 센서에 의한 Die-Hight 보정 기능(20 미크론까지) 4) Spring-Back 발생시 다양한 Motion으로 개선함 5) Drawing 가공에서 SPM 을 올려도 성형성개선 6) 금형 수명이 길다.	

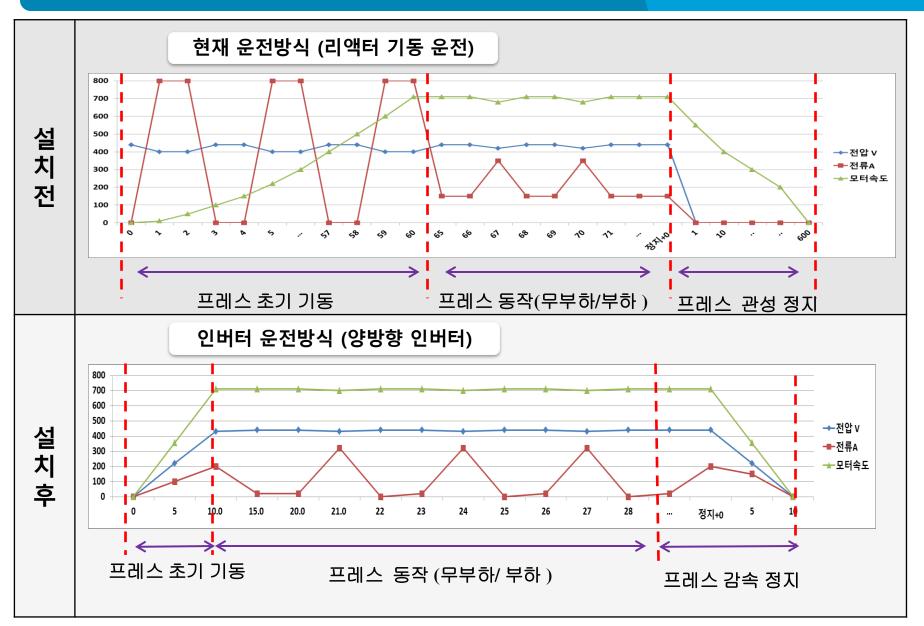
60HZ

5HZ

역회전/정회전



현대몰드산업 600TON 인버터 설치 후 작동


역회전/정회전

50HZ

5HZ

현대몰드산업 600TON 인버터 설치후 운전방식 비교

설

치

전

현대몰드산업 600TON 인버터 설치후 운전방식 비교

현재 운전방식 (리액터 기동 운전)

1. 기동 토크 부족으로 모터 정격 속도 도달 까지 오래 걸림 (약 60초) -> 에너지 낭비, 전력 계통에 무리가 감.

- 2. 초기 기동시 잦은 마그네트 ON/OFF로 전기적,기계적 수명 감소 -> 유지 보수비 증가
- 3. 정지 시 모터 관성에 의해 최종 정지 까지 시간이 많이 소요됨. (약 600초) - > 안전사고의 위험, 작업 능률 저하.

인버터 운전방식 (양방향 인버터)

설 치 후

- 1. 기동 시 전압, 전류, 주파수, 토크 제어를 제어하여 기동시킴 (10초 이내) -> 전력 계통 및 기계장비에 무리를 주지 않음. (유지비 감소)
- 2. 정지 시 전압, 전류, 주파수, 토크 제어를 제어하여 정지시킴 (10초 이내) - > 안전사고 방지, 작업 능률 향상.
- 3. 무부하 동작 시 필요 전류만 소모함 (20A) 기존 방식 (150A) -> 에너지 절감.
- 4. 프레스 작업 시 관성에 의해 발생하는 회생에너지를 계통으로 역 송전 -> 에너지 절감.

인버터 특장점

비교항목	리액터 기동 방식	단방향 인버터	양방향 인버터	
모터 타입	농형	권선형, 농형	권선형, 농형	
소요전력	1.0	0.4 ~ 0.9	0.4 ~ 0.7 (전기적, 기계적 손실분만 소요됨)	
에너지 절감	0%	10 ~ 30% (부하 특성에 따라 상이함)	10~70% (회생,부하 특성에 따라 상이함)	
	1) 속도 조절 불가 . (60Hz고정)	1) 저속.고속 운전 가능 0 ~120Hz (전압, 주파수 조절)	1) 저속.고속 운전 가능 0 ~120Hz (전압, 주파수 조절)	
	2) 오저 저피	2) 운전 정지 -> 10 초 이내 - 제동 저항기 설치 시 - 주파수에 의한 모터속도 제어	2) 운전 정지 -> 10 초 이내 - 제동 저항기 필요 없음. - 주파수에 의한 모터속도 제어	
	2) 운전 정지 - Free Run 정지 300초 이상 소요 - 브레이크 사용시 3초 이내	3) 다양한 부하조건하에서도 정지 속도 제어 (0~200% 부하조건)	3) 다양한 부하조건하에서도 정지 속도 제어 (0~200% 부하조건)	
		4) 200% 이상의 기동토크	4) 200% 이상의 기동토크	
정비 / 관리	1) 빈번한 기계적, 전기적 정비 필요 - 브레이크, 콘텍터	1) 5~10년 주기의 전기부분 교체	1) 5~10년 주기의 전기부분 교체	
설치		1) 부하 특성에 따라 제동저항기 필요 2) 기존 SYSTEM과 100% 연동	1) 제동 저항기 불필요 2) 기존 SYSTEM과 100% 연동	

인버터 적용시 전력 절감 추산표

2. 현재 방식과 인버터 운전 방식 전력 사용량 비교

프레스운전 방식	동작 상태	전압 V	소비 전류A	시간 sec/h	소비전력 kWh	금액 (원)/시간	금액 (원)/20시간/일	금액 (원)/20일/월	금액 (원)/12개월/년
리액터 기동운전	정지 -> 기동	440	800	40	5.4	591	11,812	236,235	2,834,820
	무부하 운전	440	150	2,210	55.6	6,118	122,362	2,447,247	29,366,966
	프레스 작업	440	350	1,350	79.3	8,720	174,408	3,488,158	41,857,893
	소계		3,600	140	15,429	308,582	6,171,640	74,059,679	
인버터 기동운전	정지 -> 기동	0 -> 440	200	10	0.2	18	369	7,382	88,588
	무부하 운전	440	20	2,230	7.4	816	16,315	326,300	3,915,595
	프레스 작업	440	320	1,350	72.5	7,973	159,459	3,189,173	38,270,074
	회생 에너지	440	-25	-650	-2.7	-300	-5,998	-119,963	-1,439,557
	모터 정지	440 ->0	200	10	0.2	18	369	7,382	88,588
소계 3,600			77.5	8,526	170,514	3,410,274	40,923,288		
리액터 기동운전	리액터 기동운전 -> 인버터 운전 방식으로 전환시 에너지 절감				62.8	6,903	138,068	2,761,366	33,136,391
					절감율	44.74%			

기존 방식 대비 인버터 방식 비용 계산 (20시간/일, 20일/월, 1kWh :110원, 효율 85%, 역률 95%)

1. 33,136,391 원 / 년 절감(절감율 : 44.74%)

2. 투자비 회수기간: 약 14개월

주) 상기 데이터는 현장의 관성부하에 따라 차이가 있을 수 있음.